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SUMMARY
Flaviviruses, including Dengue, West Nile, Japanese encephalitis, and Tick-borne encephalitis virus, are major emerging
human pathogens, affecting millions of individuals worldwide. Many clinically important flaviviruses elicit CNS
diseases in infected hosts, including traditional “hemorrhagic” viruses, such as Dengue. This review focuses on the
epidemiology, symptomatology, neuropathology, and, specifically, neuropathogenesis of flavivirus-induced human
CNS disease. A detailed insight into specific factors priming towards neuroinvasive disease is of clear clinical signif-
icance, as well as importance to the development of antiviral therapies and identification of key mechanisms involved
in the (re)emergence of specific flaviviruses, including potentially novel or previously unrecognized ones, as neuroin-
vasive pathogens. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION
Because of rapid changes in climate and demogra-
phy, vector-transmitted arboviral diseases pose an
increasing threat to global health and welfare [1,2].
Among the most severe arboviral infections known
to affect human race are those caused by members
of the Flavivirus genus of the Flaviviridae. The genus
comprises over 70 different members and includes
major human pathogens such as Yellow Fever virus
(YFV), Dengue virus (DENV), Japanese encephalitis
virus (JEV), Tick-borne encephalitis virus (TBEV),
and West Nile virus (WNV) [3–5].
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Flaviviruses are single-stranded, positive-sense
RNAviruses, whose genome encodes three structural
and seven NS proteins [6]. All flaviviruses circulate in
transmission cycles consisting of vertebrate hosts and
insect vectors, in which humans mostly act as dead-
end hosts [7]. Natural cases of human infection
almost invariably follow the bite of an infected tick
or mosquito, although incidental cases related to
other transmission mechanisms, including the use of
infected blood products and organ transplants or,
in case of TBEV, oral transfer through consumption
of unpasteurized milk (products) have, infrequently,
been reported as well [4,5]. A spectrum of distinct
clinical syndromes is known to complicate flavivi-
rus infections in humans, ranging from relatively
mild fever and arthalgia to severe hemorrhagic and
encephalitic manifestations [5]. In contrast to the sys-
temic syndromes, the development of encephalitic
pathology relies upon the ability of the virus to gain
entry to the CNS, a process known as viral neuroin-
vasiveness, and to infect neural cells, a phenomenon
known as neurovirulence [8]. Interestingly, both abil-
ities seem to be widely dispersed among various
members of the Flavivirus genus (Figure 1, red). Neu-
roinvasive infections frequently occur upon infection
with emerging viruses such as JEV, WNV, and TBEV,
which have a global distribution range (Figure 2) and
affect hundreds of thousands of individuals world-
wide, annually [5,9]. Recently, however, they have
also increasingly been reported in the setting of
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viruses that otherwise mostly cause hemorrhagic dis-
ease such asDENV [10–12]. This phenomenon of neu-
roinvasive dengue was, until recent years, largely
unrecognized and interestingly suggests the existence
of a continuum concerning the pathogenesis of
Figure 1. Maximum likelihood tree demonstrating the evolutionary re
ated with human CNS disease are highlighted (red). The tree was cons
tion and the hypervariable loop excluded. Sequences were assumed to
transitions and transversions and the extent of among-site variation in s
Adapted and reproduced with permission from Reference 5. ALF, Al
USU, Usutu; KOU, Koutango; KUN, Kunjin; WN, West Nile; YAO, Ya
KOK, Kokobera; STR, Stratford; BAG, Bagaza; IT, Israel Turkey menin
busu; ILH, Ilheus; ROC, Rocio; SLE, Saint Louis encephalitis; DEN, d
Uganda; JUG, Jugra; POT, Potiskum; SAB, Saboya; BOU, Bouboui; EH
Sokoluk; YOK, Yokose; GGY, Gadgets Gully; KFD, Kyasanur Forest
FETBE, Far Eastern TBE; Vs, Vasilchenko; OHF, Omsk hemorrhagic fe
MEA, Meaban; SRE, Saumarez Reef; TYU, Tyuleniy; APOI, Apoi; BC,
bat; DB, Dakar bat; RB, Rio Bravo; MML, Montana myotis leucoence
Jutiapa; SP, San Perlita; TBE, Tick-borne encephalitis; WTBE, Western
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flaviviral CNS infections and potential emergence of
more neurovirulent dengue strains.

This review aims to synthesize current knowledge
on flavivirus-induced CNS disease, including the
emerging concept of neurological dengue. Apart
lationships between the different flaviviruses. Flaviviruses associ-
tructed using partial NS5 sequence data with the third codon posi-
evolve according to the JKY85 substitution model with the rate of
ubstitution rate (i.e., Gamma distribution) estimated from the data.
fuy; MVE, Murray Valley encephalitis; JE, Japanese encephalitis;
ounde; CPC, Cacipacore; ARO, Aroa; IGU, Iguape; NJL, Naranjal;
goencephalomyelitis virus; TMU, Tembusu; THCAr, strain of Tem-
engue; SPO, Spondweni; ZIK, Zika forest; KED, Kedougou; UGS,
, Edge Hill; YF, Yellow Fever; SEP, Sepik; EB, Entebbe bat; SOK,

disease; LGT, Langat; LI, Louping ill; NEG, Negishi; Sof, Sofjin;
ver; KSI, Karshi; RF, Royal Farm; POW, Powassan; KAD, Kadam;
Batu Cave; PPB, Phnom Penh Bat; CI, Carey Island; BB, Bukalasa
phalitis; CR, Cowbone Ridge; MOD, Modoc; SV, Sal Vieja; JUT,
European TBE; RSSE, Russian spring summer encephalitis.
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Figure 2. Approximate geographic distribution of major emerging flaviviruses associated with human CNS disease. Based on data from
References 9, 14, 51–54, 89, 90 and 131
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from discussing their epidemiology, symptomatol-
ogy, and neuropathology, we will specifically focus
on the neuropathogenesis of highly prevalent emerg-
ing viruses associated with human CNS disease. A
profound understanding of the pathogenesis of
these syndromes is of clear importance with respect
to the development of effective therapeutic strate-
gies. Furthermore, the identification of specific fac-
tors involved in flaviviral neuroinvasiveness, such
as distinct viral proteins or host factors, might help
to explain the (re)emergence of specific viruses, in-
cluding previously unrecognized or potentially
novel ones, as neuroinvasive pathogens. We will
start with a discussion of JEV which, historically,
has been the best studied neurovirulent flavivirus
and is the cause of annual large-sized epidemics in
many Eastern Asian countries.
JAPANESE ENCEPHALITIS VIRUS

Epidemiology
Japanese encephalitis virus constitutes the most
significant cause of mosquito-borne encephalitis
worldwide and is endemic throughout large parts
of Central and Southeastern Asia, where it causes
a massive total of about 30,000–50,000 reported
cases of infection, annually [9,13–15]. In endemic
areas, JEV is estimated to have an asymptomatic/
Copyright © 2011 John Wiley & Sons, Ltd.
symptomatic disease ratio of about 25–1000/1
and about 20%–30% of all symptomatic infections
are fatal [9,13–15]. Symptomatic infections mostly
present as febrile syndromes that commonly
progress into the multifocal CNS disorders that
characterize the disease [9,13,14]. It has been esti-
mated that approximately 70% of symptomatic
infections clinically manifest as encephalitis,
whereas an additional 10% present as meningitis
[9,13,14]. JEV mostly affects children and nonim-
mune adults and treatment remains largely sup-
portive [16]. Effective vaccination schemes have
been developed but their implementation in high-
risk areas has, thus far, proven difficult for financial
and logistical reasons [9,17,18].
Central nervous system disease
Neurological symptoms typically develop after an
incubation period of 5–15 days and commonly in-
clude alterations of consciousness, seizures, and,
specifically, the development of Parkinsonian
movement disorders and dystonias, which have
been reported to occur in up to 60% of symptom-
atic patients [13]. Another 5%–20% of patients will,
additionally, present with poliomyelitis-like pyramidal
motor pathology, characterized by multifocal paralysis
or paresis [13]. After an acute episode of illness, about
50% of survivors retain permanent (neuro)psychiatric
Rev. Med. Virol. 2012; 22: 69–87.
DOI: 10.1002/rmv
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sequelae, which manifest as persisting cognitive or
movement disorders [13]. Although these sequelae
could result from acute disease processes, subacute
and chronic forms of JEV infection have been reported
as well. In this respect, one report has, interestingly,
described relapses associated with the recovery of
infectious virus from peripheral blood leukocytes,
whereas another study described the prolonged per-
sistence of IgM and viral antigens in the CSF of about
5% of patients studied [19,20].

Neuropathology
Autopsy studies have identified gray matter areas
of the thalamus, midbrain/substantia nigra, hippo-
campus, cerebral cortices, and anterior horns of the
medulla oblongata and cervical spinal cord as pri-
mary JEV-affected brain regions [21–25]. General
neuropathological alterations consist of edema,
hemorrhage, vascular congestion, and widespread
perivascular inflammatory infiltrates. Characteristic
of the disease are distinct foci of acellular necrotic
Figure 3. Immunohistochemical stains offlavivirus-positive brain tissue s
of hippocampal pyramidal neurons in a case of JE (anti-JEVantibody, x50
histochemical stain demonstratingWNV-positivity of pontine neurons in
x50). Courtesy ofDr. J.Guarner (Department of Pathology and Laboratory
C Immunohistochemical stain demonstrating DENV-positivity of cortical
ducedwith kind permission fromReference 109. D Immunohistochemica
of TBE (anti-TBEVantibody, H/E counterstain, x40). Courtesy of Dr. E. Ge
Vienna, Austria)

Copyright © 2011 John Wiley & Sons, Ltd.
‘plaques’ confined to gray matter areas. Astrogliosis
and the formation of microglial nodules, often in
close proximity to affected regions, have been
described as well. Furthermore, examinations of the
previously mentioned subacute and chronic cases
of infection have demonstrated diffuse calcium
deposits as well as binucleated nerve cells [21–25].
Neuronal cells, particularly pyramidal (motor)
neurons, clearly constitute the main cellular target
population of JEV in vivo. On microscopic evalua-
tion, many neurons within affected areas display
clear degenerative changes and contain viral anti-
gen [21–25] (Figure 3). Infection of vascular endothe-
lial cells as well as occasional ependymal cells and
astrocytes have, albeit infrequently, been reported
as well [21,22].

Neuropathogenesis
With respect to exact CNS entry mechanisms of JEV,
both intraneural transport through the olfactory
nerve, following intranasal inoculation, as well as
amples. A Immunohistochemical stain demonstrating JEV-positivity
). Reproduced with kind permission from Reference 22. B Immuno-
a case ofWNE (anti-flavivirus polyclonal antibody, H/E counterstain,
Medicine, EmoryUniversity School ofMedicine, Atlanta, GA,USA).
neurons in a case of dengue infection (anti-DENVantibody). Repro-
l stain demonstrating TBEV-positivity of cerebellar neurons in a case
lpi and Prof. H. Budka (Institute of Neurology,Medical University of

Rev. Med. Virol. 2012; 22: 69–87.
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hematogenous transport have been described
[26–29]. The first method of inoculation is unlikely
to occur in vivo, but a more indirect mechanism of
entry through the olfactory nerve following initial
systemic replication and subsequent hematogenous
spread to the olfactory mucosa has, interestingly,
been described in studies with the closely related
flaviviruses Saint Louis encephalitis virus (SLEV)
and Murray Valley encephalitis virus (MVEV)
[30,31]. In animal models, a cytokine-mediated in-
creased permeability of the blood-brain barrier
(BBB) has been demonstrated, which likely pre-
cedes and facilitates viral transport across the BBB
[27]. Several mechanisms of transport across the
BBB have been described, including direct infection
of vascular endothelial cells, transcellular transport,
and within infected monocytes, the so-called
“Trojan-horse” mechanism [26–29]. Within the CNS,
JEV has, notably, been shown to display a particular
tropism for developing neurons and neuroprogenitor
cellswhichmight help to explain the viral predilection
for specific brain regions, such as the hippocampus, as
well as the severity of JEV infections and their out-
come in children [32,33]. Although this distinct tro-
pism might point towards the existence of specific
neuronal JEV-receptors, few studies have examined
the presence of such receptors on cells of neural origin.
So far, only one study, using mouse neuroblastoma
cells, has been published, suggesting that heat shock
protein 70 (Hsp70) mediates viral entry into neurons
and further studies defining the nature of potential
neuronal JEV-receptors are warranted [34]. Down-
stream of cellular entry, both virus-induced apoptosis
aswell as necrosis, mediated by an uncontrolled over-
activation of microglia and release of reactive oxygen
species, TNFa, and nitric oxide (NO), leading towards
“bystander” damage to neuronal cells, have been
demonstrated in vitro [35–37]. Furthermore, microglia
and JEV-infected leukocytes have been identified as
possible viral reservoirs and could play a role in the
pathogenesis of subacute and chronic infections, as
well as the neurological sequelae, that have been
reported following JEV-infection [38,39]. The patho-
genesis of these chronic forms of JEV infection, how-
ever, has, thus far, not been widely investigated and
is certainly in need of further study.
A large number of studies have, historically, been

performed to address specific viral determinants of
neuroinvasiveness and neurovirulence. These stud-
ies have shown that a large proportion, and likely
the vast majority, of epitopes that govern JEV
Copyright © 2011 John Wiley & Sons, Ltd.
neuroinvasiveness and neurovirulence are located
within relatively limited sections of the viral enve-
lope (E) protein. Particularly, these include areas
within the lateral surface of domain III as well as
base of domain II of E, which are believed to play
crucial roles in cellular receptor binding and fusion
with target cells, respectively [8,40–45]. Apart from
these studies clearly indicating an important role
for the E protein, a relatively limited number of re-
cent studies have demonstrated the involvement of
other viral proteins in governing viral neuroinva-
siveness and neurovirulence. Several studies have,
in this respect, indicated the effect of mutations in
the viral capsid (C) and premembrane (prM) pro-
teins in limiting viral neurovirulence [46,47]. Also,
it has recently been shown that production of the
NS1’ protein, which occurs as a result of ribosomal
frame-shifting in members of the JE-serocomplex,
but not in most other flaviviruses, increases viral
neuroinvasiveness [48].

WEST NILE VIRUS

Epidemiology
West Nile virus, a mosquito-borne member of the
JE-serocomplex, which has historically been endem-
ic throughout large parts of Africa, Asia, Australia,
and Europe, caused a massive outbreak of human
disease in the New York area in 1999 and, since
then, has rapidly spread throughout the North
American continent [49–53]. Serological studies
have indicated the circulation of the virus in a
number of Latin American countries as well, but
reports on human infection have thus far remained
sparse [52,54].

Following the 1999 epidemic, WNV has become
the leading cause of arboviral encephalitis in the
USA and, here alone, a total of about 30,000 cases
of infection have been reported during the last
decade, of which approximately 1,200 (4%) have
been fatal [55]. It is estimated that about 80% of
infections are asymptomatic, whereas symptomatic
infections mostly give rise to the development of a
self-limited febrile syndrome known as West Nile
fever (WNF) [49,50]. About 1/150 patients develop
CNS complications, which are usually grouped
together under the term West Nile neuroinvasive
disease (WNND) [49,50]. Unlike some other flavi-
viruses, WNV, notably, mostly appears to affect
the elderly and immunocompromised, even when
introduced into largely naïve populations as occurred
Rev. Med. Virol. 2012; 22: 69–87.
DOI: 10.1002/rmv
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in 1999 [49,50]. Currently, treatment remains largely
supportive, although extensive scientific efforts are
being made to develop therapies for future clinical
use [56].
Central nervous system disease
West Nile neuroinvasive disease can be subclassified
into three main clinical syndromes of meningitis, en-
cephalitis, and acute flaccid paralysis/poliomyelitis
[49,50]. Of these syndromes, the clinical picture of
acute flaccid paralysis (AFP) is the most distinc-
tive as well as best characterized entity. In contrast
to what holds true for most other arboviral en-
cephalitides, neuromuscular weakness constitutes
a prominent finding in WNND, occurring in up
to 50% of patients, sometimes in the absence of
other disease symptoms [49]. AFP typically pre-
sents as monoplegia, asymmetric upper or lower
extremity weakness, or generalized asymmetric
tetraplegia or quadriplegia. Additionally, in about
70% of patients with AFP, there is involvement of
one or more of the cranial nerve(s) and a large
number of patients require intubation or ventila-
tion because of respiratory failure [49,50]. Al-
though most patients with WNV meningitis
without focal neurological deficits tend to recover
fully, the prognosis is much worse in cases of en-
cephalitis or AFP, which are characterized by a
10%–20% mortality rate [49]. Up to 70%–75% of
survivors of WNND, furthermore, retain perma-
nent neurological sequelae [49]. Recently, subacute
and relapsing forms of AFP, as well as long-term
persistence of WNV associated with viral shed-
ding in urine, have been reported in subsets of
patients, which might provide clues with respect
to possible mechanisms of flavivirus persistence
as well as the frequent occurrence of postinfec-
tious sequelae [57,58].
Neuropathology
Histologically, WNND is characterized by a
pattern of microglial nodules, perivascular in-
flammatory infiltrates and reactive astrogliosis
combined with neuronal loss, necrotic foci, and
neuronophagia [59–61]. Topographically, there is
a clear predilection for gray matter areas of the
brainstem, particularly the medulla, and spinal
cord [59–61]. Brain areas that might, additionally,
be affected include the cerebellum, temporal
lobes, basal ganglia, and thalamus [59–61]. This
Copyright © 2011 John Wiley & Sons, Ltd.
predilection in terms of affected brain areas has
been confirmed by immunohistochemical stud-
ies [59–61] (Figure 3). The virus primarily infects
neurons, mostly pyramidal motor neurons of
the anterior horns and cerebellar Purkinje cells,
although there have been occasional reports of
infection of astroglial and monocytic cells as
well [59–62].

Neuropathogenesis
The recent North American epidemics have greatly
fuelled WNV-related research and, as a conse-
quence, led to a vast increase in our knowledge of
its neuropathogenesis as well as, potentially, that
of other neuroinvasive flaviviruses.

Importantly, several adverse effects of innate and
adaptive systemic antiviral immune responses
have, during recent years, been described, which
lead towards increased permeability of the BBB
and, hence, likely facilitate viral entry into the
CNS [63]. Specifically, increases in brain endothelial
capillary permeability have been reported, induced
by the TLR3-mediated release of TNFa, as well as
by macrophage migration inhibitory factor (MIF),
intercellular adhesion molecule-1 (ICAM-1), and
matrix metallopeptidase 9 (MMP9). Dysregulations
of TLR3-responses have specifically been demon-
strated to compromise BBB-integrity in the elderly
[64–68]. Following this breakdown, the virus has
been suggested to cross the BBB via several
mechanisms, including transcellular transport,
paracellular transport, direct infection of endothe-
lial cells, or Trojan-horse mechanisms of entry
[69]. Another pathway, which was shown to di-
rectly induce AFP in animal models of infection,
includes retrograde axonal transport through
peripheral motor nerves [70].

Upon entry of the CNS, WNV displays a particu-
lar tropism for (anterior horn motor) neurons. Not
many studies have, so far, been undertaken to iden-
tify possible neuronal WNV-receptors, although
one study, interestingly, described the presence of a
plasma membrane glycoprotein of Mr 105,000 that
facilitated viral entry in murine neuroblastoma cells
[71]. Once infected, neural cells have been demon-
strated to undergo various mechanisms of apopto-
sis [72–75]. Bystander damage, resulting from
immunopathological effects of the CD8+ T-cell re-
sponse as well as the recruitment of inflammatory
monocytes mediated by chemokine (C-C motif)
ligand-2 (CCL-2), has been described, as well
Rev. Med. Virol. 2012; 22: 69–87.
DOI: 10.1002/rmv
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[76,77]. A number of recent studies have investigated
the pathogenesis of persistent WNV infections.
These studies have demonstrated persistence of
WNV in the CNS and peripheral organs, particularly
the urinary tract, and correlated neurological se-
quelae to persistent viral disease activity in the
CNS [78–80].
As for JEV, the E protein appears to be particu-

larly important in governing the neuroinvasiveness
and neurovirulence of WNV [40,81–83]. Additional
roles for the C as well as several NS proteins have
been described in governing viral neurovirulence,
but further studies addressing their roles in flavi-
viral neuropathogenesis would be required [62,84].
Interestingly, a number of predisposing host fac-

tors have now been identified. Of these, genetic risk
factors include mutations in the C—C chemokine
receptor type 5 (CCR5) and 2–5 oligoadenylate
synthethase (OAS) genes, which play important
roles in antiviral immune responses [85,86]. Fur-
thermore, a number of acquired, age-specific, T-cell
defects in both CD4 as well as CD8 subsets have
been described, which, at least in animal models,
greatly increase host susceptibility to severe and
neuroinvasive WNV infection [87].

DENGUE VIRUS

Epidemiology
The mosquito-borne DENV is by far the most
important arbovirus known to affect mankind and
constitutes a significant public health problem,
particularly in the developing world. According
to the WHO, DENV is now endemic in over 100
different countries, where some 2.5 billion people
are at risk of getting infected. In these regions, ap-
proximately 50–100million cases of DENV infec-
tion occur annually, about 250,000 to 500,000 of
which are cases of severe dengue hemorrhagic
fever (DHF) [88,89]. Outside of the more traditional
regions, a re-emergence of autochtonous DENV
transmission within Europe has, after a long period
of absence, recently, been described [90]. Approx-
imately 50% of infections are asymptomatic,
whereas symptomatic infections can present with
a variety of clinical syndromes, ranging from aspe-
cific or mild-febrile disease to the aforementioned
DHF or dengue shock syndromes (DSS) [88,89,91].
Treatment of DENV remains supportive and there
is a strong and urgent need for effective therapeutic
and vaccination strategies [88,89,91,92].
Copyright © 2011 John Wiley & Sons, Ltd.
Central nervous system disease
Apart from hemorrhagic disease symptoms, den-
gue can also present with a number of less typical
symptoms and, in this respect, there has, interest-
ingly, been a recent re-appraisal of its neurological
complications [10,11,93]. Although a large propor-
tion of neurological complications probably result
from the consequences of systemic infection, and
have been termed “dengue encephalopathy”, it
has, during recent years, become apparent that
DENV indeed also causes true neuroinvasive dis-
ease in subsets of infected individuals [10,11,93].
According to various large epidemiological studies,
neurological manifestations make up part of the
clinical picture of approximately 1%–5% of all cases
of symptomatic DENV infection and, in endemic
areas, DENV might represent a significant and
potentially underreported cause of viral enceph-
alitis [12,94–101]. Notably, these figures are roughly
comparable to those of WNV in the Western
hemisphere and the large numbers of individuals
annually affected by DENV turn the concept of
DENV-induced CNS disease into a potentially
worldwide phenomenon that is of considerable
clinical significance.

In general, neurological dengue can present
with a wide variety of CNS manifestations, which
commonly include non-specific alterations of con-
sciousness, seizures, headache, and meningeal
signs but, in analogy to JEV and WNV, may also
include paralytic or Parkinsonian symptoms
[10,11,93]. Generally, neurological dengue is associ-
ated with a poor outcome. Risk factors for the dis-
ease include infection with serotypes 2 or 3 and
the age of the patient, younger children carrying a
higher risk of developing neurological disease than
older ones [12,93].
Neuropathology
Little is known about the exact pathology of neu-
rological dengue. Relatively few studies have
addressed this phenomenon, although their num-
ber has vastly increased during recent years. A
number of early autopsy studies have reported
general neuropathological alterations, such as
edema, vascular congestion, and perivascular lym-
phocytic infiltration, in the CNS of patients with
dengue [102,103]. These studies, furthermore,
reported distinct neuronal abnormalities, many
neurons being acidophilic or displaying a clear
Rev. Med. Virol. 2012; 22: 69–87.
DOI: 10.1002/rmv



76 G. J. Sips et al.
shrinkage of cytoplasm. A number of recent studies
have demonstrated high positivity rates of CSF
samples for DENV RNA and DENV-specific IgM
or IgG in patients with neurological dengue, indi-
cating that direct neuroinvasion might occur in a
considerable fraction of these patients [99,104,105].
Another study on patients with neurological dengue
interestingly reported infiltration of both gray and
white matter areas with DENV-positive macro-
phages that were often found in close proximity to
neurons demonstrating clear cytopathic alterations
[106]. Additionally, various studies have demon-
strated the presence of DENV antigens in neurons,
astrocytes, microglia, endothelial and perivascular
cells, or recovered viral RNA by RT-PCR from brain
tissue samples [94,107–109] (Figure 3).

Neuropathogenesis
The concept of neuroinvasive dengue has arisen
relatively recently and, as a consequence, its neuro-
pathogenesis largely remains elusive. Much of our
present knowledge on this topic, interestingly,
comes from animal models that were originally
aimed at studying hemorrhagic disease. In many
of these models, DENV was shown to induce neu-
rological instead of hemorrhagic syndromes and,
therefore, they have been very successful in iden-
tifying a number of possible neuropathogenic
mechanisms and underlying virus-host interactions
[110]. With respect to entry into the CNS, a cytokine-
mediated breakdown of the BBB and Trojan-horse
mechanism of entry have been suggested [106,111].
Furthermore, a distinct viral tropism for neurons of
the anterior horns, hippocampus, cerebral cortex,
and olfactory bulb has been demonstrated in vivo,
and DENV-triggered apoptosis has been shown to
occur in human and murine neurons both in vivo
and in vitro [112–117]. Interestingly, as was, in a
slightly different way, suggested for JEV, Hsp70,
together with Hsp90, has been shown to form a
candidate receptor complex governing DENV entry
in human monocytes as well as neuroblastoma cells
[118]. Additionally, a possible DENV receptor of
Mr 65,000 has been identified on human andmurine
neuroblastoma cells as well, although the role of
both proteins as potential neuronal dengue recep-
tors in vivo requires further elucidation [119]. As
for WNV and JEV, mutations within several
domains of the DENV E protein have been shown
to mediate DENV neuroinvasiveness and neuro-
virulence in animal models of infection [120–125].
Copyright © 2011 John Wiley & Sons, Ltd.
OTHER MOSQUITO-BORNE CAUSES OF
CENTRAL NERVOUS SYSTEM DISEASE
Apart from the viruses discussed so far, two other
members of the Japanese encephalitis serocomplex,
SLEV and MVEV, as well as a member of the Ntaya
serocomplex, Rocio virus (ROCV), have been asso-
ciated with the development of human CNS dis-
ease [5]. Although these viruses have caused
considerable epidemics in the past, they have not
done so during recent decades, the reasons for
which are not understood. Occasional cases of hu-
man infection, particularly for SLEV, continue to
be reported and proof of the continuous circulation
of all of these viruses in various vertebrate hosts in
wildlife exists [126–129]. Factors and mechanisms
explaining why these viruses apparently have not,
in recent years, re-emerged as major human patho-
gens, whereas closely related flaviviruses have, are
important topics of further study and will likely
provide more general insight into flavivirus ecol-
ogy and virus-host interactions.

TICK-BORNE ENCEPHALITIS VIRUS

Epidemiology
Tick-borne encephalitis virus is the most common
cause of arboviral encephalitis in Europe and, in
terms of annual morbidity, second only to JEV
among the neurovirulent flaviviruses [130–132].
Historically, TBEV has been endemic in many parts
of Central Europe, the former Soviet Union and
Asia, but, more recently, has emerged in an increas-
ing number of Western European countries as well
[130–133]. Phylogenetically, European (TBEV-Eu),
Siberian (TBEV-Sib), and Far-Eastern (TBEV-FE)
TBEV subtypes are recognized, which together
have accounted for annual averages of about 9000
reported cases of infection during the past two dec-
ades [130–133]. It is estimated that about 70%–95%
of all cases of TBEV infection occur asymptomati-
cally [132]. Neurological disease manifests as men-
ingitis in 50% and (meningo)encephalitis in the
other 50% of symptomatic cases [132]. Mortality
rates have been reported to range from 0.1%–4%,
upon infection with TBEV-Eu, to up to 20%–40%
following infection with TBEV-FE [130–132]. Like
WNV, TBEV mostly affects the elderly [131]. A
number of antiviral vaccines are available and
large-scale vaccination programs have, so far with
varying rates of success, been implemented in a
number of countries where TBEV is endemic [133].
Rev. Med. Virol. 2012; 22: 69–87.
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Central nervous system disease
Common neurological symptoms have been report-
ed to include ataxia and tremors. Approximately
10%–15% of symptomatic cases are complicated by
the development of poliomyelitic pathology thatmost
commonly affects the upper limbs [131]. Neurological
sequelae develop in about 20%–50% of survivors and
chronic forms of TBEV have been reported as well
[130–132]. Most cases of chronic TBEV infection have
been linked to specific TBEV (TBEV-Sib) subtypes,
possibly pointing towards the importance of specific
viral factors in the pathogenesis of chronic flaviviral
CNS disease [134].
Neuropathology
Tick-borne encephalitis virus induces widespread
inflammatory changes, characterized by diffuse
inflammatory infiltrates in combination with astro-
gliosis, the formation of microglial nodules, neurono-
phagia, and varying degrees of neuronal loss [135]. In
general, the most frequently affected areas, in declin-
ing order, include the anterior horns of the spinal cord,
brainstem, cerebellum, and basal ganglia [135]. Im-
munohistochemical experiments have demon-
strated that many large neurons within affected
areas contain viral antigen, although, interestingly,
an inverse correlation between the number of
infected neurons and magnitude of the infiltrating
immune response was observed, suggesting un-
derlying immunopathogenic mechanisms [135]
(Figure 3).
Neuropathogenesis
Very little is known about the exact route of entry of
TBEV into the CNS. This is likely mostly hematoge-
nous, because a high level of peripheral viremia
appears to be a prerequisite for the development
of neurological symptoms [136]. Individual reports,
however, correlating tick bites of the upper trunk to
the development of localized shoulder girdle paral-
ysis and paresis, suggest direct entry via peripheral
nerves might take place as well [137]. Within the
CNS, neurons are the most affected cell types and
a number of human neural cell lines have been dem-
onstrated to undergo apoptosis as well as necrosis
upon infection with TBEV in vitro [138]. Autopsy
studies, however, have been inconsistent in demon-
strating the occurrence of neuronal apoptosis
in vivo and, furthermore, imbalances between viral
Copyright © 2011 John Wiley & Sons, Ltd.
loads and the magnitude of the infiltrating immune
responses have, as mentioned previously, been
demonstrated, indicating potentially underlying
immunopathogenic mechanisms [135]. Indeed, a
more detailed examination of the anti-TBEV im-
mune response in post-mortem tissue sections
indicated that CD8+ granzyme B-releasing cytotoxic
T-cells might significantly contribute to neuronal
damage in vivo via the induction of bystander dam-
age [139]. This pathological role of CD8+ T cells, as
well as adverse effects of an elevated TNFa
response, was later confirmed by in vivo animal
experiments, suggesting that both viral as well as
immunological factors determine the eventual out-
come of TBEV-infections [140,141]. A number of
specific viral and host factors have now been iden-
tified. Important host factors, as for WNV, have
been demonstrated to include genetic alterations
in the CCR5, OAS, and TLR3 genes, which play cru-
cial roles in antiviral immune responses [142–144].
Compromised T-cell responses have been sug-
gested to significantly contribute to the develop-
ment of chronic TBEV infections, and, furthermore,
in some of these chronic cases autoantibodies
against axonal neurofilaments were found which
were absent in acute cases of TBEV [145,146]. A
number of mutations in the viral genome have
been demonstrated to mediate viral neuroinva-
siveness and/or neurovirulence. Most promi-
nently, these include mutations within the lateral
region of domain III of the TBEV E protein, as is
the case for many mosquito-borne flaviviruses
discussed so far as well [147–149]. Additionally,
mutations within the 3’-noncoding region (NCR)
of the TBEV genome, probably affecting viral
RNA replication, as well as the viral C protein, in-
terfering with virus assembly, have been shown to
alter viral neuroinvasiveness as well as neuroviru-
lence in animal models [150]. A recent study,
furthermore, provided evidence that TBE viruses
naturally exist as quasispecies populations and
that attenuation of the viral virulence profile
depends upon selection out of this pre-existing
pool of viruses rather than upon random muta-
genesis. The nonstructural NS2B and NS3 pro-
teins have been suggested to play an important
role in this selection process [151]. Furthermore,
another nonstructural protein, NS1, of particular
strains of TBEV-Sib has, interestingly, been
demonstrated to play a role in the development
of chronic TBEV [134].
Rev. Med. Virol. 2012; 22: 69–87.
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OTHER TICK-BORNE CAUSES OF CENTRAL
NERVOUS SYSTEM DISEASE
Apart from TBEV, two other members of the TBE-
serocomplex, Powassan virus (POWV) and Louping
ill virus (LIV), have been associatedwith the develop-
ment of human CNS disease [5]. As is true for the
less common mosquito-borne viruses, these viruses
have not caused any large human outbreaks recently,
despite their continuous circulation among various
types of vertebrate hosts in wildlife [152,153].

CONCLUSIONS AND FUTURE PERSPECTIVES
As demonstrated in this review, the Flavivirus ge-
nus of the family Flaviviridae consists of a group
of highly important human pathogens, many of
which possess the capacity to induce a range of
specific CNS diseases in infected hosts. Here, we
have reviewed the epidemiology, symptomatology,
pathology, and, specifically, pathogenesis of neu-
roinvasive flavivirus infections, combining and
comparing current knowledge of all major emerg-
ing flaviviruses associated with human CNS
disease (summarized in Tables 1 and 2). In this
respect, an interesting and, thus far, not much-
studied phenomenon is the pathogenesis of neu-
rological dengue. DENV is an example of a highly
prevalent flavivirus, which, under most circum-
stances, displays a relatively low tendency to cause
Table 1. Overview of the epidemiology, sympto
CNS diseases caused by major emerging flavivir

Virus Endemic areas CNS disease
(% symptomatic disease

JEV Central and
SE Asia
[13–15]

Encephalitis (70%)
Parkinsonism/dystonia (
Meningitis (10%)
[9,13,14]

WNV Worldwide
(diffuse)
[49–54]

WNND (<1%)
AFP (50% of WNND)
[49,50]

DENV Tropical
regions
worldwide
[88,89,91]

Neurological Dengue (1-
Encephalopathy (?)
Encephalitis (?)
[12,94–98]

TBEV Europe, Asia
[130–132]

Meningitis (50%)
Encephalitis (50%)
[132]

Copyright © 2011 John Wiley & Sons, Ltd.
clinically overt CNS infections but appears to do so
in a subset of cases, when specific conditions aremet.
This suggests the existence of a kind of continuum
with respect to the pathogenesis of flavivirus-
induced CNS disease. A number of common themes,
both in terms of the neuropathogenesis as well as
neuropathology of neuroinvasive flaviviruses, can,
indeed, be identified and provide interesting ave-
nues for future research (Figure 4, Table 2).

Synthesis of the reviewed data reveals that all
neuroinvasive flaviviruses infect a relatively limited
number of highly specific brain regions involved in
motor control, including the thalamus, basal ganglia,
brainstem, and anterior horns of the spinal cord,
resulting in distinct neurological disease symptoms.
It, therefore, remains of clear interest to study these
as well as other viruses that specifically target these
brain areas with respect to the etiology and patho-
genesis of, especially transient, sporadic, or idio-
pathic cases of, motor disorders of unknown origin
in which identical brain regions are affected [154].

Viral entry into the nervous system plays a key
role in the pathogenesis of flavivirus-induced
CNS disease. (Severe) systemic infections, resulting
in a mass release of inflammatory factors and cyto-
kines, might pave the way for CNS infections by
compromising BBB-integrity. In this process, host
factors governing antiviral immune responses
matology and current treatment options of
uses associated with human CNS disease

)
Sequelae

(%)
Risk groups
endemic areas

Therapies

60%)
50%
[13]

Children
Nonimmune
adults
[13,14]

Vaccination
Supportive
[16–18]

70-75%
[49]

Elderly
[49,50]

Supportive
[56]

5%) ? Children?
[12]

Supportive
[91,92]

20-50%
[130–132]

Elderly
[131]

Vaccination
Supportive
[133]
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Figure 4. Overview of different entry mechanisms (A) as well as commonly affected brain areas (B) in flavirus-induced CNS disease
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might, as has now been demonstrated, play an im-
portant role. Another interesting mode of viral
entry into the CNS is provided by axonal transport,
where viruses hitchhike along existing neuronal
transport pathways. Viral spread within the CNS
might occur via these axonal pathways as well, as
many affected brain areas have been demonstrated
to be interconnected structures involved in motor
functioning. Indeed, flaviviruses have been demon-
strated to possess a specific tropism for (motor)neu-
rons, which have been demonstrated to undergo
various mechanisms of apoptosis and/or necrosis
following infection. Although specific neuronal
receptors have thus far not clearly been identified,
the flaviviral E protein, which is directly involved in
cellular receptor recognition, has repeatedly been
demonstrated to be highly important in governing vi-
ral neuroinvasiveness and neurovirulence (Figure 5).
Increased knowledge of flaviviral neuropatho-

genesis, as reviewed here, has significantly contrib-
uted to stronger evidence-based preventive and
therapeutic options and has considerably im-
proved our insight into the structural and genetical
mechanisms that have enabled these viruses to
(re)emerge as neuroinvasive pathogens. Mutation
studies revealing the structural regions within the
viral genome that determine viral neuroinvasive-
ness and neurovirulence, including the lateral
surface of domain III as well as the base of domain
II of the E protein, have, in this respect, been highly
important for the development of safe, attenuated
vaccine strains, many of which are now being
investigated in (pre)clinical trials [17,92]. Further-
more, the natural occurrence of mutations leading
Copyright © 2011 John Wiley & Sons, Ltd.
to successfully replicating wild-type strains of
increased neuroinvasiveness might explain why
certain flaviviruses have evolved and (re)emerged
as specific neuroinvasive pathogens. Host and eco-
logical factors have probably played a role in this
process as well, because closely related viruses that
do have neurovirulent potential are probably, for
other reasons, not circulating to a sufficient extent
in the human population, while, at the same time,
not all individuals infected with widely prevalent
neurovirulent viruses eventually develop CNS
symptoms. The association of dengue with neu-
roinvasive disease and emergence of WNV as the
cause of WNND in the Western hemisphere are,
in light of the (re)emergence of neuroinvasive flavi-
viral strains, interesting examples, as WNV had
historically mostly been associated with relatively
“mild” and dengue, in its severe manifestations,
with “hemorrhagic” disease. A particular insight
into the neuropathogenesis of neurological dengue
is, in this respect, warranted.

Increased knowledge on flaviviral neuropatho-
genesis will be crucial for the development of thera-
peutic approaches aimed at mitigating serious
neurological disease complications as well. A spe-
cifically important prerequisite of these therapies
should be their ability to cross the BBB and become
locally available within the CNS. In this respect, as
an important example, humanized monoclonal
antibodies have now been described for WNV that
were not only able to prevent, but also treat
neurological complications once infection of the
CNS had established [155]. Despite their hematoge-
nous administration, these antibodies were,
Rev. Med. Virol. 2012; 22: 69–87.
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Figure 5. Structural overviewof the envelope of amatureflavivirus virion (A) aswell as severalmolecular determinants of neuroinvasiveness and
neurovirulence locatedwithin specific sections of theEprotein (B). FigureA illustrates the organization of Eproteins on the viral envelope.Groups
of three parallel homodimers are clustered within dictinct rafts which, together, form a typical herringbone pattern on the viral surface. A single
raft is highlighted and symmetry axes as well as the respective domains of the E proteins are indicated (domain I: red; domain II: yellow; domain
III: blue and fusion loop: green) Figure B provides a structural close-up of an individual homodimer in which several amino acids that have, ex-
perimentally, been shown to alter neuroinvasiveness and neurovirulence are highlighted (numbered arrows). Note that many of the indicated
mutations map to the lateral surface of domain III or the base of domain II of E (circles), indicating the potential role of specific cellular receptors
or attachment factors in the pathogenesis of flavivirus-induced CNS disease. Adapted and reproduced with kind permission from Reference 45.
The amino acid numbers as well as their approximate positions, as depicted in Figure 5B, are based on data from Reference 8
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furthermore, able to prevent neuronal spread and
the subsequent development of AFP in animal
models of infection. In light of flaviviral neuro-
pathogenesis, this is highly relevant as various fla-
viviruses might spread towards, and within, the
CNS through axons, potentially rendering purely
peripherally acting treatment methods ineffective
[70,156]. Trials with these antibodies have now been
started and it will be interesting to analyze their ef-
fectivity in the clinical setting [56]. Additionally,
again fuelled by a detailed knowledge of neuro-
pathogenic mechanisms, several approaches aimed
at maintaining the integrity of the BBB, possibly by
Copyright © 2011 John Wiley & Sons, Ltd.
directly acting on compromising factors such as
MMP9, as well as inhibiting different mechanisms
of neuronal apoptosis, are currently being investi-
gated in in vitro as well as in vivomodels of neuroin-
vasive infection [73,157–160]. It will be interesting
to pursue these and similar lines of research further
and examine whether they can potentially be ex-
trapolated to other (neuroinvasive) flaviviruses or
combined in order to develop more effective
treatments.

Further research into flaviviral neuropathogen-
esis is, in light of these therapeutic efforts as well
as the unparalleled prevalence and impact of the
Rev. Med. Virol. 2012; 22: 69–87.
DOI: 10.1002/rmv
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respective viruses, of major global importance. It
should specifically include the study of, thus far,
less intensively investigated topics, including the
potential existence of specific neuronal receptors,
prevalence, potential clinical significance, and
pathogenesis of chronic and persistent flaviviral
CNS infections, and exact characteristics of neuro-
logical dengue. Taking into account their full zoo-
notic spectrum as well as potential to (re)emerge,
future research should not be limited to major
causes of human encephalitis but should include
the study of other, even currently less prevalent
or significant, flaviviral causes of CNS disease in
humans and other vertebrates alike.
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